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Anisotropy of the viscosity of nematic liquid crystals and 
of oriented ferro-fluids via non-equilibrium molecular 
dynamics 

S Hess, J F Schwarzl and D Baalss 
Institut fur Theoretische Physik, Technische Universitat Berlin, Hardenbergstrasse 36, 
D-1000 Berlin 12, Federal Republic of Germany 

Received 9 July 1990, in final form 10 August 1990 

Abstract. The anisotropy of the viscosity and the flow alignment of nematic and nematic 
discotic liquid crystals as well as that of oriented ferro-fluids are described by the same set 
of viscosity coefficients. Results obtained from NEMD computer simulations are reported for 
completely aligned nematics and for perfectly oriented ferro-fluids. 

1. Introduction 

The combination of ‘fluidity’ (the typical property of a ‘liquid’) and ‘anisotropy’ (usually 
associated with ‘crystalline’ materials) provides one of the fascinations of liquid crystals 
and of other anisotropic fluids. In this article, results for the ‘anisotropy of the viscosity’ 
and the flow alignment coefficients as obtained from non-equilibrium molecular 
dynamics (NEMD) computer simulations are presented for nematic and nematic discotic 
crystals as well as for oriented ferro-fluids. A comparison with theoretical model cal- 
culations and experimental data is made. Firstly, some remarks on the viscosity coef- 
ficients are in order. 

2. Viscosity coefficients 

The (local) orientation of a nematic liquid crystal is specified by a unit vector n, termed 
the ‘director’. If a viscous flow takes place in the presence of a (strong) orienting electric 
or magnetic field which determines the direction of n, the effective viscosity depends on 
the relative orientation of n with respect to the flow geometry. Four orientations suffice 
to describe the anisotropy of the shear viscosity [l]. For the meaning of the three 
Miesowicz coefficients q l ,  q 2 ,  q3 and of q4, see figure 1. Let p $  be the yx component of 
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Figure 1. The principal directions 1-4of the field- 
induced orientation of the molecules with respect 
to the flow velocity u.and its gradient. 
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Miesowicz Viscosities 
Figure 2. The Miesowicz viscosities q , ,  q 2 ,  q3 as 
function of the shear rate r in a double-log- 
arithmic plot for the LJ fluid with the axis ratio 
Q = Bat the density p = 0.6 and the temperature 
T =  l . l 5 : 0 , O , d i r e c t i o n l ; U , l , d i r e c t i o n 2 ;  A ,  
A, direction 3; 0, A ,  0, the potential contri- 
bution; 0, A, l, the total (sum of the potential 
and the kinetic contributions) viscosity coef- 
ficients. 

the pressure tensor for these orientations (i = 1,2,3,4)  and 
of a plane Couette flow. Then the coefficients qi are defined by 

= du,/dy, the shear rate 

Instead of q4, the ‘Helfrich coefficient’ 

1112 = 4114 - 2(11l + T j 2 )  (2) 

is used. The Leslie coefficients y 1  and y 2  occur in connection with the torque acting on 
the molecules or the antisymmetric part of the pressure tensor [l-31: 

2(P&’ -Pi;’> = Y1 + Y 2  2(P,F - Pi;’) = Y1 - Y 2  (3) 

where the superscripts 1 and 2 refer to the orientations of n specified above. The 
coefficient y 2  is linked with 11 and q 2  by the Onsager-Parodi relation 

Y2 = 111 - 112.  (4) 

An additional coefficient, denoted by K ,  has to be considered even for a divergence-free 
flow of a nematic liquid crystal. It is defined by [2,3] 

2&d4’ = - K r  ( 5 )  
where Sp = p - peq is the change in the scalar pressure (one third of the trace of the 
pressure tensor) and the superscript (4) refers to the specific orientation. The coefficients 
y 2 ,  qI2 and K may have either sign. 

Ordinary nematic liquid crystals are composed of rod-like (prolate) molecules. Fluids 
of disc-like (oblate) molecules may also possess a nematic phase which is referred to as 
nematic discotic. Ferro-fluids are dispersions containing (spherical) colloidal particles 
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with a core composed of magnetized iron or cobalt. The magnetic moments of these 
particles can be aligned by a magnetic field. Apart from the Hall-effect-like contributions 
to the transport coefficients which are odd in the applied magnetic field, an oriented 
ferro-fluid is characterized by the same set of viscosity coefficients as a nematic liquid 
crystal [2]. 

3. Non-equilibrium molecular dynamics 

Model fluids composed of perfectly oriented non-spherical particles are studied by NEMD 
techniques where a plane Couette flow is simulated in analogy to previous investigations 
on simpie fluids [4-8]. 

3.1. Model potentials 

The potentials used to model perfectly aligned nematic and nematic discotic fluids are 
related to spherical interaction potentials by an affine transformation. The anisotropic 
binary interaction potential (PA(r) is given by 

@ A ( r )  = @sph(rA) (6) 

( 7 )  

where (Psph is the spherical interaction potential and 

with apositive definite (transformation) matrix A. It describes the mapping of the sphere 
fi - fl = constant on an ellipsoid. If the eigenvalues A,, i = 1, 2 ,  3 obey the relation 
A1A2A3 = 1, the volume is conserved. For uniaxial particles with their symmetry axis 
parallel to the unit vector U and the axis ratio Q = a/b of the semiaxes a and b = c of the 
equipotential surfaces, one has 

r A  . r A  = r .  A a r 

r A  - r A  = QZi3[ r .  r + - l)(r U)’]. (8) 
Owing to the complete orientation (Maier-Saupe order parameter S = l), U is equal to 
the director n. Specific choices of U with respect to the flow direction and its gradient are 
made in accord with the preferential directions 1-4. Nematics and nematic discotic fluids 
are distinguished by Q > 1 (prolate) and Q < 1 (oblate). For (Psph the soft sphere (ss) 
r-” and the Lennard-Jones (LJ) 4(r-” - r -6)  potential were used; the corresponding 
ellipsoidal particles are referred to as ‘soft ellipsoids’ (SE) and Lennard-Jones ellipsoids 
(LJE). 

Theferro-fluid is modelled by a S S  potential with embedded dipoles with the magnetic 
moment p = pn where p is the magnitude of the moment and n is the unit vector parallel 
to the external magnetic field whichdetermines the direction of p.  The resulting potential 
is (i = r-lr)  

(P = r-” - 3 ~ ’ r - ~ [ ( n  - i)2 - 41. (9) 
Again, n is chosen to be parallel to the special directions mentioned above. Physical 
variables are expressed in standard S S  [4-71 and LJ [4-71 units. The potential are cut off 
at r, = 2.5. 

3.2. Pressure tensor and viscosities 

In the NEMD simulation, the components of the pressure tensor p are evaluated according 
to 



SA282 S Hess et a1 

Table 1. The viscosity coefficients q , ,  v 2 ,  v 3 ,  v12 ,  yI, y 2  and K for the LJE and SE model fluids 
with Q = 8 and Q = 4 (at p = 0.6, T = 1.15 and p = 0.6, T = 0.25, respectively) as well as 
for the SSD model ferro fluid with p2 = 0.8 (at p = 0.6, T = 0.25). 

LJE LJE SE SE SSD 
Q = $  Q = $  Q = ;  Q = 3  p2 = 0.8 

q l  0.15 & 0.04 3.1 ? 0.1 0.09 2 0.03 2.7 t 0.3 0.63 t 0.05 
v 2  3.5  t 0.3 0.17 t 0.06 2.8 t 0.3 0.10 t 0.02 0.43 ? 0.04 
q 3  0.70 ? 0.10 0.80 t 0.1 0.52 t 0.10 0.55 t 0.1 0.50 k 0.04 

Yl 2.2 & 0.4 2.0 t 0.1 1.9 t 0.3 1.9 t 0.3 0.16 & 0.02 

K 0 . O t  0.04 - 0.0 t 0.03 - 0.6 k 0.02 

vi* -2.1 t 0 . 4  - -1.8 t 0 . 3  - 2.0 t 0.1 

y2 -3.5 t 0.4 2.9 t 0.1 -2.7 t 0.3 2.7 t 0.3 0.17 & 0.02 

Here V is the volume of the periodicity box containing N particles; c‘ is the particular 
velocity of particle i, r’’ = r’ - rJ is the difference between the position vectors of particles 
i and j ;  F” is the force acting between them. The angular brackets (. . . ) refer to an 
average over many (typically 104-105) time steps. The two terms on the RHS of equation 
(10) are referred to as the ‘kinetic’ and the ‘potential’ contributions to the pressure 
tensor. 

The plane Couette flow is generated by the homogeneous shear algorithms [4,9]. At 
a prescribed shear rate = au,/ay, the viscosities of interest can be inferred from the 
yx and xy components of the pressure tensor (for the various orientations of the non- 
spherical particles) according to (1)-(3); furthermore K is obtained from the shear- 
induced change of the trace of the pressure tensor (cf (5)). In figure 2, the Miesowicz 
viscosities q l ,  q 2 ,  q 3  are displayed as functions of F for an LJE fluid with the axis ratio 
Q = 3 at the (reduced) density and temperature p = 0.6 and T = 1.15 (LJ units; N = 
128). A shear rate dependence of the viscosity (non-Newtonian behaviour) has also 
been observed in NEMD simulations of simple fluids [4-71. The viscosity coefficients 
reported here are their ‘Newtonian values’ obtained for small r. 

In table 1, NEMD results are listed for the LJE fluids ( p  = 0.6, T = 1.15; reduced LJ 
units; N = 128) with Q = 3 (nematic) and Q = $(nematic discotic); for the SE fluids ( p  = 
0.6, T = 0.25; reduced ss units) also with Q = 5 and Q = 3 and for the model ferro-fluid 
referred to as ‘soft spheres with dipoles’ (SSDS) at the state point p = 0.6, T = 0.25 
(reduced ss units; N = 512) with the magnitude y of the dipole moment given by y2 = 
0.8. For the cases Q = 3 no simulations for the geometry 4 were performed; therefore 
the data for q12 and K are not available. The state points for ellipsoidal fluids were chosen 
such that one is not in the vicinity of a transition to a positionally ordered state [2 ,3 ,  $1. 
In the model ferro-fluid this cannot be excluded. A number of remarks are in order. 

(i) In nematics (Q > l), the expected sequence 

is found for the Miesowicz viscosities. For nematic discotics (Q < l ) ,  one has 

rl > r 3  > 7 2  Y 2  > 0. (12) 
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(ii) The model ferro-fluid obeys the inequalities (12) of a discotic substance. This 
seems surprising at first glance since the magnetic particles have a tendency to form 
chain-like structures [lo,  111. On the other hand, the 'shape' of the oriented dipolar 
particles determined by the equipotential surface where @ equals the temperature Tis 
oblate (corresponding to Q < 1). For p2 = 0.8, the effective axis ratio is Q -- 0.63. 

(iii) The Onsager-Parodi relation (4) is obeyed within the computational accuracy. 
(iv) In all cases studied, the inequality 1 y 2 /  > y1 applies, which is necessary for a 

stable flow alignment in nematic liquid crystals. 
(v) The negative sign of qlz and K = 0 for the ellipsoidal fluids is in accord with 

theoretical calculations [2,8] (cf section 4). For oblate ellipsoids one also expects qI2 < 0 
and K = 0. With regards to these coefficients, the model ferro-fluid behaves differently. 

Furthermore, the potential contribution to the pressure tensor of the SSD fluid (in 
contradistinction to the SE and LJE fluids) is anisotropic in thermal equilibrium. This 
implies that pxy # 0 in geometry 4 even for r = 0. A positive sign of K means a partial 
destruction of that anisotropy by the shear flow. 

4. Comparison with theory and experiments 

4.1. Nematic liquid crystals 

For the affine transformation model originally proposed by Helfrich [12], the potential 
contributions q p"' to the viscosity coefficients q l  can be expressed in terms of the axis 
ratio Q and the viscosity of a reference fluid composed of spherical particles [2,8]. The 
theoretical results needed here are 

q Y ' /q  PO' = q y'/q 90' = Q 2  (13) 

~ i / ~ 9 "  = ( Q  - (14) 

V I 2  = -Y1 K = 0. (15) 

The data listed in table 1 for the LJE and SE fluids obey relation (15). The total viscosity 
coefficients ql given in table 1 are the sum of q F" and q p"'; the kinetic contributions 
qhin are small, but not negligible. The NEMD data for the ratios q 3 / q l ,  q2 /q3 ,  y l / q j  and 
- q12/y1 agree well with the theoretical predictions. The agreement with experimental 
data [13] is fair although the ratios q3/ql and -q12/y1 are overestimated by both the 
theory and the simulations based on the affine transformation model. 

4.2. Ferro-fluids 

The simulations show that all viscosity coefficients required for nematics are also non- 
zero for ferro-fluids. Early theoretical considerations [14] attributed the anisotropy of 
the flow properties of ferro-fluids solely to y 1  # 0 and q3 # s (q ,  + q 2 )  but ignored the 
possibilities of having q l  # q 2 ,  y 2  # 0 and q 1 2  + 0. Application of an affine trans- 
formation model with an effective Q = 0.63 overestimates the anisotropy of the Mie- 
sowicz viscosities and cannot account for q 12 > 0 and K > 0. 

Measurements of a Poiseuille flow through a pipe with circular cross-section yielded 
~ 5 1  

q ~ + q ~ = q 1 - s ( q 2 + q 3 ) > 0  (16) 



S Hess et a1 

where 1 1  and i refer to the magnetic field parallel and perpendicular to the flow direction. 
The NEMD data for the SSD fluid listed in table 1 also obey the inequality (16). The need 
to use the full set of the nematic viscosity coefficients for ferro-fluids was also noticed on 
account of theoretical considerations and of experimental data [16]. 

4.3. Concluding remarks 

For nematics close to the transition to a smectic phase, the smallest viscosity q 2  ( n  
parallel to the flow direction) increases strongly; the order (10) is no longer obeyed and 
qI2 is positive [13]. A similar behaviour is expected for nematic discotic substances close 
to a transition into a columnar phase. The ellipsoidal SE and LJE model treated here do 
not possess a smecticphase [ 171 ; the model ferro-fluid, however, can undergo a transition 
to columnar and lamellar phase [ l l ,  181. This fact might explain qI2 > 0. 
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